a2 United States Patent
Hsieh et al.

US009465707B2

US 9,465,707 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) POST (POWER-ON-SELF-TEST)
DEBUGGING METHOD AND APPARATUSES
USING THE SAME

(71)
(72)

Applicant: Wistron Corp., New Taipei (TW)

Inventors: Min Hua Hsieh, New Taipei (TW); Yu

Hong Chen, New Taipei (TW)
(73)

")

Assignee: WISTRON CORP., New Taipei (TW)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 80 days.

@
(22)

Appl. No.: 14/587,672

Filed: Dec. 31, 2014

(65) Prior Publication Data

US 2016/0103747 Al Apr. 14, 2016

(30) Foreign Application Priority Data

Oct. 9, 2014 (TW) 103135170 A

(51) Int. CL
GOGF 11/22
U.S. CL
CPC ... GOGF 11/2284 (2013.01); GO6F 2011/2278
(2013.01)

(2006.01)
(52)

Field of Classification Search
USPC 714/36
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0155332 Al* 6/2008 Landers GO6F 11/1417
714/36

2010/0017796 Al* 1/2010 Walker GOG6F 9/4411
717/174

2010/0058314 Al* 3/2010 Wangcccccoeeevin. GOG6F 8/65
717/168

2010/0169633 Al* 7/2010 Zimmer GOG6F 21/575
713/2

2012/0159254 Al* 6/2012 Su .ccovvviiiiinnn. GO6F 11/2284
714/36

2015/0193620 Al* 7/2015 Khatricccoenne GOG6F 21/575
713/2

2015/0235030 Al* 82015 Chaiken GOG6F 21/572
726/22

2015/0278068 Al* 10/2015 Swanson GO6F 11/3476
713/2

2016/0070913 Al* 3/2016 Kulkarni GOG6F 21/575
713/2

FOREIGN PATENT DOCUMENTS

™ 201011531 3/2010
™ 201030614 8/2010
™ 201128386 8/2011

OTHER PUBLICATIONS

Chinese language office action dated Oct. 15, 2014, issued in
application No. TW 103135170.
English language translation of relevant paragraphs of office action.

* cited by examiner

Primary Examiner — Kamini Patel
(74) Attorney, Agent, or Firm — McClure, Qualey &
Rodack, LLP

(57) ABSTRACT

The invention introduces a POST (power-On-Self-Test)
debugging method, executed by a processing unit, which
contains at least the following steps. A phase number indica-

5,615331 A * 3/1997 Toorians GOGF 11/3664 R 3 X .
714/5.11 tive of a current POST phase is set. A driver is selected from
8,694,761 B2 4/2014 Zimmer et al. a scheduled queue. A GUID (Globally Unique Identifier) of
8,904,182 B2* 12/2014 Bardera Bosch G06F7%;?‘6‘§ the driver is obtained. The phase number and the GUID are
2007/0011507 Al* 1/2007 Rothman GOGF 112736 Stored or output, so as to recognize the phase of the driver
714/718 being }ntequpted upon a break point of the driver. After that,
2007/0174705 Al* 7/2007 Shihc.ccceeee. GOGF 11/2284 the driver is executed.
714/36
2008/0141073 Al* 6/2008 Shih ... GO6F 11/3648
714/36 16 Claims, 5 Drawing Sheets
120 130 160
Input Connection

Display
Unit

Device

Interface

110

Processing
Unit

150
J

140

Volatile
Meinory

Non-volatile
Memory

US 9,465,707 B2

Sheet 1 of 5

Oct. 11, 2016

U.S. Patent

["DId

ATOUISIA AIOWIBIA]
STIBJOA-TUON IMR[OA
\ J
e
ovl 361
nun
Buisssooig
_\\
01t
SOV 301AS(] 1ii1g]
it chliti(ug’ nduy Artdsiy
7 7 ~
091 Otl A

US 9,465,707 B2

Sheet 2 of 5

Oct. 11, 2016

U.S. Patent

¢ DI

ST~ €Td~ 12d~
aseyd HX aseqd IHd oseyd DHS
SINPON PIOOSY Hoegiie
— ~
U 7 0s?
v 0€T
£ 0£7—
7 0£7—
1 0£7— FIALI(] 3 | w@mmﬁmmwﬁ QEQAA)
—

U.S. Patent Oct. 11, 2016 Sheet 3 of 5 US 9,465,707 B2

Loads and execute a core dispatcher of a

(the next) phase —S311
!

Set a phase number g3
¥

Select a driver from a scheduled queue and 5333
store the selected driver ma cache of a
processing umit or a volatile memory

i

Obtain the GUID of this driver - 85335
i

Call and execute a callback record module 5337
¥

Execute the driver stored m the cache or

the volatile memory —- 5339

S351
e | Whetheraﬁ T
drwers of this phase have b@m
ﬁxecuted‘?

N@

N e) Whether te —
No .-
\Vhﬂie piatfam mitiahmtmn -

Perform the OS boot 5301

FIG. 3

U.S. Patent

US 9,465,707 B2

140

Oct. 11, 2016 Sheet 4 of 5
2101
Core Dispatcher
~210 2

Core Dispatcher

2103

Core Dispatcher

FIG. 4

U.S. Patent

Oct. 11, 2016 Sheet 5 of 5 US 9,465,707 B2
e 140

510a 510b

530a 530b

FIG. 5

US 9,465,707 B2

1

POST (POWER-ON-SELF-TEST)
DEBUGGING METHOD AND APPARATUSES
USING THE SAME

CROSS REFERENCE TO RELATED
APPLICATIONS

This Application claims priority of Taiwan Patent Appli-
cation No. 103135170, filed on Oct. 9, 2014, the entirety of
which is incorporated by reference herein.

BACKGROUND

1. Technical Field

The present disclosure relates to debugging technology,
and in particular, to POST debugging method and appara-
tuses using the same.

2. Description of the Related Art

A POST (power-on self-test) is a process performed by
firmware or software routines immediately after a computer
apparatus is powered on. The results of tests run by the
POST may be displayed on a panel that is part of the
computer apparatus, output to an external device, or stored
for future retrieval by a diagnostic tool. Typically, drivers
executed in the POST for hardware initiation are provided
by different vendors, such as a BIOS (Basic Input Output
System) manufacturer, a chipset manufacturer, an OEM
(Original Equipment Manufacturer), etc., and check points
are inserted in the drivers by these vendors. However,
identification numbers of drivers provided by different ven-
dors may be redundant, leading to a misunderstanding of the
interrupted firmware when a check point is reached. Thus, it
is desirable to have a POST debugging method and appa-
ratuses using the same to address the aforementioned draw-
backs.

BRIEF SUMMARY

An embodiment of the present disclosure introduces a
method for debugging in a POST (power-On-Self-Test),
executed by a processing unit, which contains at least the
following steps. A phase number is set to indicate that a
phase of the POST has been entered. A driver is selected
from a scheduled queue. A GUID (Globally Unique Identi-
fier) of the driver is obtained. The phase number or the
GUID is stored or output, thereby enabling to recognize that
the driver of the phase is interrupted when a break point of
the driver is to be reached. After that, the driver is executed.

An embodiment of the present disclosure introduces a
POST debugging apparatus, which contains at least a vola-
tile memory and a processing unit. The processing unit
contains a cache and is coupled to the volatile memory. The
processing unit sets a phase number to indicate that a phase
of the POST has been entered; selects a driver from a
scheduled queue; obtains a GUID of the driver; and stores or
outputs the phase number or the GUID, thereby enabling to
recognize that the driver of the phase is interrupted when a
break point of the driver is to be reached. After that, the
processing unit executes the driver.

A detailed description is given in the following embodi-
ments with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be fully understood by reading
the subsequent detailed description and examples with ref-
erences made to the accompanying drawings, wherein:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is the system architecture of a computer apparatus
according to an embodiment of the present disclosure;

FIG. 2 is a schematic diagram illustrating a POST (power-
on self-test) according to an embodiment of the present
disclosure;

FIG. 3 is a flowchart illustrating a method for debugging
in a POST according to an embodiment of the present
disclosure;

FIG. 4 is a schematic diagram illustrating the storage of
core dispatchers according to an embodiment of the present
disclosure; and

FIG. 5 is a schematic diagram illustrating the storage of
phase numbers and GUIDs of drivers according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION

The following description is of the best-contemplated
mode of carrying out the present disclosure. This description
is made for the purpose of illustrating the general principles
of the present disclosure and should not be taken in a
limiting sense. The scope of the present disclosure is best
determined by reference to the appended claims.

The present disclosure will be described with respect to
particular embodiments and with reference to certain draw-
ings, but the present disclosure is not limited thereto and is
only limited by the claims. It will be further understood that
the terms “comprises,” “comprising,” “includes” and/or
“including,” when used herein, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

Use of ordinal terms such as “first”, “second”, “third”,
etc., in the claims to modify a claim element does not by
itself connote any priority, precedence, or order of one claim
element over another or the temporal order in which acts of
a method are performed, but are used merely as labels to
distinguish one claim element having a certain name from
another element having the same name (but for use of the
ordinal term) to distinguish the claim elements.

FIG. 1 is the system architecture of a computer apparatus
according to an embodiment of the present disclosure. The
system architecture may be practiced in a desktop computer,
a notebook computer, a tablet computer, a mobile phone or
another electronic apparatus, at least including a processing
unit 110. The processing unit 110 can be implemented in
numerous ways, such as with dedicated hardware, or with
general-purpose hardware (e.g., a single processor, multiple
processors or graphics processing units capable of parallel
computations, or others) that is programmed using micro-
code or software instructions to perform the functions
recited herein. The system architecture further includes a
non-volatile memory 140, such as a ROM (Read Only
Memory), a EPROM (Erasable Programmable Read Only
Memory), a NVRAM (Non-Volatile Random Access
Memory), etc., for storing firmware routines executed for
hardware in a POST, which are provided by different ven-
dors; a volatile memory 150, such as a DRAM (Dynamic
Random Access Memory), for storing necessary data in
execution, such as variables, data tables, or others, and a
register 170 for storing GUIDs (Globally Unique Identifiers)
associated with the currently executed driver and the last
executed driver. It should be understood that the non-volatile
memory 140 and/or the register 170 may be integrated into
the processing unit 110, and the present disclosure should
not be limited thereto. The system architecture further

US 9,465,707 B2

3

includes a connection interface 160, thereby enabling the
processing unit 110 to communicate with another electronic
apparatus. The connection interface 160 may be a USB
(Universal Serial Bus) interface, a COM (Communication)
interface, or others. The system architecture further includes
one or more input devices 130 to receive user input, such as
a keyboard, a mouse, a touch panel, or others. A user may
press hard keys on the keyboard to input characters, control
a mouse pointer on a display by operating the mouse, or
control an executed application with one or more gestures
made on the touch panel. The gestures include, but are not
limited to, a single-click, a double-click, a single-finger
drag, and a multiple finger drag. A display unit 120, such as
a TFT-LCD (Thin film transistor liquid-crystal display)
panel, an OLED (Organic Light-Emitting Diode) panel, or
another display unit, may also be included to display input
letters, alphanumeric characters and symbols, dragged paths,
drawings, or screens provided by an application for a user to
view.

FIG. 2 is a schematic diagram illustrating a POST (power-
on self-test) according to an embodiment of the present
disclosure. The POST contains at least three phases: a SEC
(SECurity) phase P21; a PEI (PreExtensible-firmware-inter-
face Initialization) phase P23; and a DXE (Driver Execution
Environment) phase P25. These three phases are referred to
as a platform initialization collectively, and in each phase, a
particular core dispatcher is used to coordinate with all
hardware initializations. At the beginning of each phase, the
processing unit 110 loads and executes the core dispatcher
210 of this phase. The processing unit 110, when executing
the core dispatcher 210, selects a driver from a scheduled
queue and stores it in a cache (not shown) of the processing
unit 110 or the volatile memory 150, such as one of the
drivers 230_1 to 230_zn, where n is an integer greater than O
(the operation is also referred to as loading a driver). Each
driver has a GUID. GUIDs are unique reference numbers
used as identifiers of the drivers 230_1 to 230_rn. GUIDs
may be stored as 128-bit values, and displayed as 32
hexadecimal digits with groups separated by hyphens, such
as {21 EC2020-3AEA-4069-A2DD-08002B30309D}. After
loading a driver, the processing unit 110 further calls and
executes a callback record module 250. When executing the
callback record module 250, the processing unit 110 may
store or output this phase number and the GUID of this
driver. In an example, the processing unit 110 may store this
phase number and the GUID of this driver in the non-volatile
memory 140. In another example, the processing unit 110
may store this phase number and the GUID of this driver in
a register of port 80, enabling the phase number and the
GUID of the driver to be displayed in the display unit 120.
In still another example, the processing unit 110 may store
this phase number and the GUID of this driver in a register
of the connection interface 160, enabling the phase number
and the GUID of the driver to be output to another electronic
apparatus. After executing the callback record module 250,
the processing unit 110 starts to fetch and execute the stored
instructions of the driver to finish an initialization for
specific hardware. Next, the processing unit 110 repeatedly
executes the core dispatcher 210 to load the next driver from
the scheduled queue, call and execute the callback record
module 250, and execute the loaded driver until all drivers
of this phase are executed completely. It should be noted
that, when any break point is reached, a user may recognize
which driver of a particular phase breaks by viewing infor-
mation of the display unit 120, obtaining the updated output

10

15

20

25

30

35

40

45

55

60

65

4

phase number and GUID via the connection interface 160 or
reading the updated phase number and GUID from the
volatile memory 150.

FIG. 3 is a flowchart illustrating a POST debugging
method according to an embodiment of the present disclo-
sure. The method is performed when the processing unit 110
loads and executes relevant firmware routines. The process
repeatedly loads and executes a core dispatcher of a (the
next) phase until the whole platform is initialized completely
(step S311), and under the control of the core-dispatcher,
completes necessary hardware initialization tasks of this
phase (steps SD31 to S371). FIG. 4 is a schematic diagram
illustrating the storage of core dispatchers according to an
embodiment of the present disclosure. The non-volatile
memory 140 stores three core dispatchers 210_1 to 210_3
when being executed by the processing unit 110 to manage
relevant hardware initialization in the SEC phase P21, the
PEI phase P23 and the DXE phase P25, respectively. Under
the control of the designated core dispatcher, the processing
unit 110 first sets a phase number (step S331). For example,
when the core dispatcher 210_1 is executed, the variable
“Progress Code” is set to “01” to indicate that the SEC phase
P21 has been entered; when the core dispatcher 210_2 is
executed, the variable “Progress Code” is set to “02” to
indicate that the PEI phase P23 has been entered; and when
the core dispatcher 210_3 is executed, the variable “Progress
Code” is set to “03” to indicate that the DXE phase P21 has
been entered. Then, the processing unit 110 repeatedly
performs a loop (steps S333 to S371) until all relevant
hardware initialization of this phase is complete. Specifi-
cally, the processing unit 110 selects a driver from the
scheduled queue and stores the selected driver in a cache
(not shown) of the processing unit 110 or the volatile
memory 150 (step S333), obtains the GUID of this driver
(step S335), calls and executes the callback record module
250 (step S337), executes the driver stored in the cache (not
shown) or the volatile memory 150 (step S339) and deter-
mines whether all drivers of this phase have been executed
(step S351). If so, the process proceeds to the next deter-
mination (step S371); otherwise, the process continues to
select the next driver from the scheduled queue to do the
subsequent process (step S333). In step S333, when the
cache of the processing unit 110 has been initialized but the
volatile memory 150 has not been initialized, the driver may
be stored in the cache of the processing unit 110. Alterna-
tively, when the volatile memory 150 has been initialized,
the driver may be stored in the volatile memory 150. In step
S337, when the callback record module 250 is executed, the
processing unit 110 may store or output the phase number
and the GUID of this driver. It should be noted that, after the
callback record module 250 is executed completely, the
execution control is returned to the core dispatcher to
continue the operation of step S339. In step S339, after the
driver is executed completely, the execution control is
returned to the core dispatcher to continue the determination
of step S351.

After all drivers of this phase are executed completely
(the “Yes” path of step S351), it is determined whether the
whole platform initialization is complete, that is, whether the
aforementioned three phases P21, P23 and P25 are com-
pleted (step S371). If so, the processing unit 110 performs
the OS (Operating System) boot (step S391); otherwise, the
processing unit 110 loads and executes the core dispatcher of
the next phase to continue hardware initialization of the next
phase (step S311).

After the break point of a driver is reached, the user may
reboot the whole system, therefore, the core dispatcher is

US 9,465,707 B2

5

re-executed. Before the driver is interrupted, in step S337,
the processing unit 110 stores a phase number and a GUID
of this driver in the non-volatile memory 140. The re-
executed core dispatcher may overwrite the phase number
and the GUID of the driver, which are stored before the
interruption, with the newly obtained phase number and the
GUID of the currently executed driver. In order to avoid the
aforementioned problem, the reboot procedure may contain
a step for duplicating the phase number and the GUID of the
driver, which are stored before an interruption, in a new
location of the non-volatile memory 140. FIG. 5 is a
schematic diagram illustrating the storage of phase numbers
and GUIDs of drivers according to an embodiment of the
present disclosure. A region 510a of the non-volatile
memory 140 stores the newly obtained phase number and a
region 5105 of the non-volatile memory 140 stores the
newly obtained GUID representing a driver. When the
reboot procedure is executed, the processing unit 110 dupli-
cates the values of the regions 510a and 5105 of the
non-volatile memory 140 (that is, the phase number and the
GUID representing a driver, which are stored before an
interruption) in the regions 530a and 5305 of the non-
volatile memory 140.

Although the embodiment has been described as having
specific elements in FIG. 1, it is noted that additional
elements may be included to achieve better performance
without departing from the spirit of the present disclosure.
While the process flow described in FIG. 3 includes a
number of operations that appear to occur in a specific order,
it should be apparent that these processes can include more
or fewer operations, which can be executed serially or in
parallel (e.g., using parallel processors or a multi-threading
environment).

While the present disclosure has been described by way of
example and in terms of the preferred embodiments, it
should be understood that the present disclosure is not
limited to the disclosed embodiments. On the contrary, it is
intended to cover various modifications and similar arrange-
ments (as would be apparent to those skilled in the art).
Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
such modifications and similar arrangements.

What is claimed is:

1. A POST (power-On-Self-Test) debugging method,
executed by a processing unit, comprising:

setting a phase number indicative of a current POST

phase;

selecting a driver from a scheduled queue;

obtaining a GUID (Globally Unique Identifier) of the

driver;

storing or outputting the phase number and the GUID so

as to recognize the driver of the phase being interrupted
upon a break point of the driver; and

executing the driver,

wherein the step of selecting a driver from a scheduled

queue comprises:
selecting the driver from the scheduled queue and storing
the driver in a cache of the processing unit when the
cache of the processing unit has been initialized but a
volatile memory has not been initialized; and

selecting the driver from the scheduled queue and storing
the driver in the volatile memory when the volatile
memory has been initialized.

2. The method of claim 1, wherein the volatile memory is
a DRAM (Dynamic Random Access Memory).

3. The method of claim 1, wherein the phase number is
indicative of a SEC (SECurity) phase, a PEI (PreExtensible-

20

30

35

40

45

50

55

60

65

6

firmware-interface Initialization) phase, or a DXE (Driver
Execution Environment) phase.

4. The method of claim 1, wherein the GUID is stored as
128-bit values indicative of an unique identifier of the driver.

5. The method of claim 1, wherein the step of storing or
outputting the phase number or the GUID comprises:

storing the phase number and the GUID in a register

having a port equaling to 80 so as to display the phase
number and the GUID by a display unit.

6. The method of claim 1, wherein the step of storing or
outputting the phase number or the GUID comprises:

storing the phase number and the GUID in a register of a

connection interface so as to output the phase number
and the GUID to an electronic apparatus.

7. The method of claim 6, wherein the connection inter-
face is an USB (Universal Serial Bus) interface or a COM
(Communication) interface.

8. The method of claim 1, wherein the step of storing or
outputting the phase number or the GUID comprises:

storing the phase number and the GUID in a non-volatile

memory.

9. An POST (power-On-Self-Test) debugging apparatus,
comprising:

a volatile memory; and

a processing unit comprising a cache, coupled to the

volatile memory, setting a phase number indicative of
a current POST phase; selecting a driver from a sched-
uled queue; obtaining a GUID (Globally Unique Iden-
tifier) of the driver; storing or outputting the phase
number and the GUID, so as to recognize the driver of
the phase being interrupted upon a break point of the
driver; and executing the driver,

wherein the processing unit selects the driver from the

scheduled queue and stores the driver in the cache of
the processing unit when the cache of the processing
unit has been initialized but the volatile memory has
not been initialized; and selects the driver from the
scheduled queue and stores the driver in the volatile
memory when the volatile memory has been initialized.

10. The apparatus of claim 9, wherein the volatile memory
is a DRAM (Dynamic Random Access Memory).

11. The apparatus of claim 9, wherein the phase number
is indicative of a SEC (SECurity) phase, a PEI (PreExten-
sible-firmware-interface Initialization) phase, or a DXE
(Driver Execution Environment) phase.

12. The apparatus of claim 9, wherein the GUID is stored
as 128-bit values indicative of a unique identifier of the
driver.

13. The apparatus of claim 9, comprising:

a display unit,

wherein the processing unit stores the phase number and

the GUID in a register having a port equaling to port 80
so as to display the phase number and the GUID by the
display unit.

14. The apparatus of claim 9, comprising:

a connection interface,

wherein the processing unit stores the phase number and

the GUID in a register of the connection interface, so
as to output the phase number and the GUID to an
electronic apparatus.

15. The apparatus of claim 14, wherein the connection
interface is a USB (Universal Serial Bus) interface or a
COM (Communication) interface.

US 9,465,707 B2
7

16. The apparatus of claim 9, comprising:

a non-volatile memory,

wherein the processing unit stores the phase number and
the GUID in the non-volatile memory.

#* #* #* #* #*

